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1

Background of thermodynamics of solids

1.1 Extensive and intensive conjugate quantities

The physical quantities used to define the state of a system can be scalar
(e.g. volume, hydrostatic pressure, number of moles of constituent), vec-
torial (e.g. electric or magnetic field) or tensorial (e.g. stress or strain). In all
cases, one may distinguish extensive and intensive quantities. The distinc-
tion is most obvious for scalar quantities: extensive quantities are size-
dependent (e.g. volume, entropy) and intensive quantities are not (e.g.
pressure, temperature).
Conjugate quantities are such that their product (scalar or contracted

product for vectorial and tensorial quantities) has the dimension of energy
(or energy per unit volume, depending on the definition of the extensive
quantities), (Table 1.1). By analogy with the expression of mechanical work
as the product of a force by a displacement, the intensive quantities are also
called generalized forces and the extensive quantities, generalized displace-
ments.
If the state of a single-phase system is defined byN extensive quantities e

�
and N intensive quantities i

�
, the differential increase in energy per unit

volume of the system for a variation of e
�
is:

dU��
�

i
�
de

�
(1.1)

The intensive quantities can therefore be defined as partial derivatives of
the energy with respect to their conjugate quantities:

i
�
�

�U
�e

�

(1.2)

For the extensive quantities, we have to introduce the Gibbs potential
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Table 1.1. Some examples of conjugate quantities

Intensive quantities i
�

Extensive quantities e
�

Temperature T Entropy S
Pressure P Volume V
Chemical potential � Number of moles n
Electric field E Displacement D
Magnetic field H Induction B
Stress � Strain �

(see below):

G�U��
�

i
�
e
�

(1.3)

dG��
�

i
�
de

�
� d�

�

i
�
e
�
���

�

e
�
di

�
(1.4)

and we have:

e
�
��

�G
�i

�

(1.5)

Conjugate quantities are linked by constitutive relations that express the
response of the system in terms of one quantity, when its conjugate is made
to vary. The relations are usually taken to be linear and the proportionality
coefficient is a material constant (e.g. elastic moduli in Hooke’s law).
In general, starting from a given state of the system, if all the intensive

quantities are arbitrarily varied, the extensive quantities will vary (and
vice-versa). As a first approximation, the variations are taken to be linear
and systems of linear equations are written (Zwikker, 1954):

di
�
�K

��
de

�
�K

��
de

�
� · · ·�K

��
de

�
(1.6)

or

de
�
� �

��
di

�
��

��
di

�
� · · ·��

��
di

�
(1.7)

The constants:

�
��

��
�e

�
�i

�
�
��� � � �� ��� �����	 ��

(1.8)

are called compliances, (e.g. compressibility), and the constants:
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K
��

��
�i

�
�e

�
�
��� � � �� ��� �����	 ��

(1.9)

are called stiffnesses (e.g. bulk modulus).
Note that, in general,

K
��

�
1

�
��

The linear approximation, however, holds only locally for small values
of the variations about the reference state, and we will see that, in many
instances, it cannot be used. This is in particular true for the relation
between pressure and volume, deep inside the Earth: very high pressures
create finite strains and the linear relation (Hooke’s law) is not valid over
such a wide range of pressure. One, then, has to use more sophisticated
equations of state (see below).

1.2 Thermodynamic potentials

The energy of a thermodynamic system is a state function, i.e. its variation
depends only on the initial and final states and not on the path from the
one to the other. The energy can be expressed as various potentials accord-
ing to which extensive or intensive quantities are chosen as independent
variables. The most currently used are: the internal energy E, for the
variables volume and entropy, the enthalpy H, for pressure and entropy,
theHelmholtz free energy F, for volume and temperature and theGibbs free
energy G, for pressure and temperature:

E (1.10)

H�E�PV (1.11)

F�E� TS (1.12)

G�H� TS (1.13)

The differentials of these potentials are total exact differentials:

dE� TdS�PdV (1.14)

dH� TdS� VdP (1.15)

dF�� SdT �PdV (1.16)

dG�� SdT � VdP (1.17)
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The extensive and intensive quantities can therefore be expressed as
partial differentials according to (1.2) and (1.5):

T ��
�E
�S�




��
�H
�S�

�

(1.18)

S���
�F
�T�




� ��
�G
�T�

�

(1.19)

P���
�E
�V�

�

���
�F
�V�




(1.20)

V ��
�H
�P�

�

��
�G
�P�




(1.21)

In accordance with the usual convention, a subscript is used to identify
the independent variable that stays fixed.
From the first principle of thermodynamics, the differential of internal

energy dE of a closed system is the sum of a heat term dQ� TdS and a
mechanical work term dW ��PdV. The internal energy is therefore the
most physically understandable thermodynamic potential; unfortunately,
its differential is expressed in terms of the independent variables entropy
and volume that are not the most convenient in many cases. The existence
of the other potentials H, F and G has no justification other than being
more convenient in specific cases. Their expression is not gratuitous, nor
does it have some deep and hidden meaning. It is just the result of a
mathematical transformation (Legendre’s transformation), whereby a
function of one or more variables can be expressed in terms of its partial
derivatives, which become independent variables (see Callen, 1985).

The idea can be easily understood, using as an example a function y of a variable x:
y� f (x). The function is represented by a curve in the (x, y) plane (Fig. 1.1), and the
slope of the tangent to the curve at point (x, y) is: p� dy/dx. The tangent cuts the
y-axis at the point of coordinates (0,�) and its equation is: �� y� px. This
equation represents the curve defined as the envelope of its tangents, i.e. as a
function of the derivative p of y(x).
In our case, we deal with a surface that can be represented as the envelope of its

tangent planes. Supposing we want to expressE (S,V ) in terms of T andP, we write
the equation of the tangent plane:

��E��
�E
�V�

�

V ��
�E
�S�




S�E�PV � TS�G

In geophysics, we are mostly interested in the variables T and P; we will therefore
mostly use the Gibbs free energy.
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Figure 1.1 Legendre’s transformation: the curve y� f (x) is defined as the envelope
of its tangents of equation �� y� px.

1.3 Maxwell’s relations. Stiffnesses and compliances

The potentials are functions of state and their differentials are total exact
differentials. The second derivatives of the potentials with respect to the
independent variables do not depend on the order in which the successive
derivatives are taken. Starting from equations (1.18)—(1.21), we therefore
obtain Maxwell’s relations:

��
�S
�P�




��
�V
�T�

�

(1.22)

�
�S
�V�




��
�P
�T�




(1.23)

�
�T
�P�

�

� �
�V
�S�

�

(1.24)

�
�T
�V�

�

���
�P
�S�




(1.25)

Other relationships between the second partial derivatives can be ob-
tained, using the chain rule for the partial derivatives of a function
f (x, y, z)� 0:

�
�x
�y�

�

·�
�y
�z�

�

·�
�z
�x�

�

�� 1 (1.26)

For instance, assuming a relation f (P,V,T )� 0, we have:
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Table 1.2. Derivatives of extensive (S,V ) and intensive (T,P) quantities

�
�S

�T�



�
C



T �

�S

�V�



� �K

 �

�S

�P�



�
C

�
�K

�
T

�
�S

�T�
�

�
C

�
T �

�S

�V�
�

�
C

�
�VT �

�S

�P�



�� �V

�
�T

�S�



�
T

C



�
�T

�V�
�

��
�K

�
T

C
�

�
�T

�P�



�
1

�P

�
�T

�S�
�

�
T

C
�

�
�T

�V�
�

�
1

�V �
�T

�P�
�

�
�VT

C
�

�
�P

�T�



� �K

 �

�P

�V�
�

� �
K

�
V �

�P

�S�



��
1

�V

�
�P

�T�
�

�
C

�
�VT �

�P

�V�



� �
K



V �

�P

�S�



�
�K

�
T

C
�

�
�V

�T�
�

��
C

�
�K

�
T �

�V

�P�
�

� �
V

K
�

�
�V

�S�



�
1

�K



�
�V

�T�
�

� �V �
�V

�P�



� �
V

K



�
�V

�S�
�

�
�VT

C
�

�
�V
�T�

�

���
�V
�P�




·�
�P
�T�




(1.27)

With Maxwell’s relations, the chain rule yields relations between all
derivatives of the intensive and extensive variables with respect to one
another (Table 1.2). Second derivatives are given in Stacey (1995).
We must be aware that Maxwell’s relations involved only conjugate

quantities, but that by using the chain rule, we introduce derivatives of
intensive or extensive quantities with respect to non-conjugate quantities.
These will have a meaning only if we consider cross-couplings between
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fields (e.g. thermoelastic coupling, see Section 2.3) and the material con-
stants correspond to second-order effects (e.g. thermal expansion).
In Zwikker’s notation, the second derivatives of the potentials are stiff-

nesses and compliances (Section 1.1):

K
��

�
�i

�
�e

�

�
��U

�e
�
�e

�

(1.28)

�
��

�
�e

�
�i

�

�
��G

�i
�
�i

�

(1.29)

It follows, since the order of differentiations can be reversed, that:

K
��

�K
��

(1.30)

�
��

��
��

(1.31)

Inspection of Table 1.2 shows that, depending on which variables are
kept constant when the derivative is taken, we define isothermal,K



, and

adiabatic, K
�
, bulk moduli and isobaric, C

�
, and isochoric, C



, specific

heats. We must note here that the adiabatic bulk modulus is a stiffness,
whereas the isothermal bulk modulus is the reciprocal of a compliance,
hence they are not equal (Section 1.1); similarly, the isobaric specific heat is
a compliance, whereas the isochoric specific heat is the reciprocal of a
stiffness.
Table 1.2 contains extremely useful relations, involving the thermal and

mechanical material constants, which we will use throughout this book.
Note that, here and throughout the book, V is the specific volume. We will
also use the specific mass 	, with V	� 1. Often loosely called density, the
specific mass is numerically equal to density only in unit systems in which
the specific mass of water is equal to unity.
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